AI 模型 GameGAN 重寫《小精靈》,目標:看影片就能學習的 AI

AI 模型 GameGAN 重寫《小精靈》,目標:看影片就能學習的 AI

NVIDIA放出一個使用 AI 模型 GameGAN 復刻的《小精靈》遊戲,以致敬誕生40週年的街機版《小精靈》。根據NVIDIA發佈的研究報告,GameGAN 目標是用神經網路取代遊戲引擎。

它不同於以往用 AI 做遊戲的例子。之前的Google DeepMind 和 Open AI 還是在現有遊戲框架中,被用來「玩遊戲」,相當於是智慧型產生一個遊戲對手。例如 OpenAI 被用來在 Dota2 5v5中對戰人類,OpenAI 2018年透過學習人類示範的玩法,在蒙特祖瑪的復仇遊戲中刷出了74500分的高分。

GameGAN 則被用來「創作」遊戲,是對現有遊戲程式碼的取代。它在訓練過程中攝入大量遊戲劇本和鍵盤動作,透過觀察場景和玩家的操作動作,預測下一格的遊戲畫面,而不存取底層遊戲邏輯或引擎。

「當玩家按下左鍵的時候,這個 AI 會猜測畫面的變化,並且產生一個「看起來是角色在往左走」的圖像。 中間發生的事情,全部都在 AI 的黑盒子中。 沒人知道 AI 是怎麼理解玩家操作的,得到的只有最終的輸出結果。」

除了產生下一格遊戲畫面,GameGAN 還學習環境的內在動力學,「我們有興趣訓練一個遊戲模擬器,它可以模擬環境的確定性和隨機性」。

GameGAN包括動力引擎;記憶模組;算繪引擎;對抗性損失、循環損失訓練和培訓計畫。

AI 模型 GameGAN 重寫《小精靈》,目標:看影片就能學習的 AI

首先GameGAN要學習環境會如何跟隨使用者操作變化而改變,這涉及一些基本的規則,例如不能穿過牆壁。同時還要透過存取歷史,產生一致性模擬。場景中的長期一致性實現透過記憶模組實現,GameGAN使用記憶體模組,記住產生的靜態元素,如背景,並在需要的時候適當檢索。神經算繪引擎負責算繪模擬圖像。此外,對抗訓練用來完成圖像和影片的合成任務,GameGAN用對抗性訓練學習環境動力學,並產生真實的時間相關模擬。

這次復刻《小精靈》,主要訓練的細節包括小精靈的速度和移動能力;鬼魂的運作方式;小精靈吃下大力丸後的變化;鬼魂與小精靈相遇的場景。據瞭解,GameGAN基於PyTorch開發,模型研發已經進行了8個月,關於復刻《小精靈》只用了4天。

遊戲開發商萬代南宮夢為此次訓練提供了總計幾百萬影格、50000集的《小精靈》劇本。該公司的 Koichiro Tsutsumi 表示:「在看到這個結果時,我們都感到震驚,大家都無法相信可以在沒有遊戲引擎的情況下再現了南夢宮的經典遊戲《小精靈》。這項研究將幫助遊戲開發人員加快新關卡、角色甚至遊戲的開發。一想到這一點,我們就感到十分興奮。」

不過,復刻遊戲只是開始,NVIDIA的目標是擴展模型來捕捉更複雜的現實世界環境。NVIDIA多倫多研究實驗室主任 Sanja Fidler 表示:「我們最終將訓練出一個 AI,其只需透過觀看影片和觀察目標在環境中所採取的行動,就能模仿駕駛規則或物理定律。」 而 GameGAN 只是第一步。

Nvidia GameGAN Research:

https://cdn.arstechnica.net/wp-content/uploads/2020/05/Nvidia_GameGAN_Research.pdf

cnBeta
作者

cnBeta.COM(被網友簡稱為CB、cβ),官方自我定位「中文業界資訊站」,是一個提供IT相關新聞資訊、技術文章和評論的中文網站。其主要特色為遊客的匿名評論及線上互動,形成獨特的社群文化。

使用 Facebook 留言
發表回應
謹慎發言,尊重彼此。按此展開留言規則